蒲公英 - 制药技术的传播者 GMP理论的实践者

搜索
查看: 764|回复: 0
收起左侧

[谈天说地] Scientists may have found a way to overcome common genetic causes of male inf...

[复制链接]
药生
发表于 2017-11-1 08:00:00 | 显示全部楼层 |阅读模式

欢迎您注册蒲公英

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
One in seven couples sadly struggles with infertility – defined as failing to conceive after trying for more than 12 months. Approximately one third of these cases are due to problems with the man, another third are down to the woman and the last third are due to a combination of both partners. Although we don’t understand the cause of male infertility in the majority of cases, we do know there is a small genetic component.
Since 1959, we have known that an extra X chromosome in men (XXY instead of XY, also known as Klinefelter’s syndrome) is associated with low sperm production and infertility. This is now recognised as the most common genetic cause of infertility. For a long time, scientists have pondered whether we can’t just delete the extra sex chromosome in these individuals to enable normal sperm production. But this has been considered a purely theoretical and fanciful idea – until now.
A new paper, published in Science, shows it is indeed possible to delete the extra sex chromosome and produce normal, healthy fertile sperm in mice. The research is really quite remarkable. It raises hopes for restoring fertility in those living with other chromosomal abnormalities, too.
Klinefelter’s syndrome is relatively uncommon, affecting between one in 1,000 to one in 1,500 men. The extra X chromosome appears to have a relatively minimal impact on body tissue, but it can cause weaker muscles, smaller genitals, lower libido and breast growth in male individuals. For reasons that we don’t yet fully understand, it has a profound negative effect on the development of germ cells – the sperm and eggs – and subsequent sperm production and fertility. Men with Klinefelter’s syndrome have reduced testicular function and generally produce no or few sperm.

Prior to the advent of ICSI (Intracytoplasmic sperm injection) – a procedure in which a single sperm is injected directly into an egg – these men were sterile. However, with the ability to recover a few sperm from the ejaculate or the testicles and inject these into eggs, scientists managed to successfully create an embryo using sperm recovered from an XXY patient in 1995. Subsequently, there have been over 120 such births.
Deleting chromosomes
When turning tissue from the ear of XXY (and XYY) mice into connective tissue knows as fibroblasts and subsequently into stem cells (cells that can produce indefinitely more cells), the scientists behind the new research noticed that some of the cells lost the extra sex chromosome. They also showed that this kind of chromosome loss happens when reprogramming human cells that have three instances of a particular chromosome, instead of the normal two.
Subsequently, they developed an experimental cocktail to produce germ cells from these stem cells in a lab dish. However, to produce fully functional sperm it was necessary to place these germ cells into the testicles of a male mouse. Remarkably, these sperm were fertile. When injected into eggs, they created healthy, fertile offspring free of the chromosomal abnormality.
The research boosts hopes that men with Klinefelter’s syndrome, for example, would be able to produce sperm and healthy offspring in cases where they don’t actually produce any sperm. The researchers showed similar chromosome loss in mice with the equivalent of Down’s syndrome. This is exciting, as men and women with Down’s syndrome tend to have lower fertility and have a high risk of their children having Down’s syndrome, too. In fact people with a number of genetic conditions that are associated with infertility may one day be helped by the technique.
There are a number of substantial challenges to overcome for this to be realised in humans. The toughest one will be to produce functional germ cells outside the human body. We are still very much at the early stages of understanding these processes.
It will also be challenging to determine when to start human experiments. In the UK, we have a strict but permissive legislative framework for generating human embryos for research. As such, under research procedures, we would have to determine the viability, genetic and epigenetic profile of a blastocyst (a structure of cells formed in the early development of the fetus) created from germ cells in the lab. As long as these are normal then the next steps are to proceed to implantation of the embryos into the woman.
We are undoubtedly a long way from achieving this, but truly breath-taking progress is being made in the area of stem cell and germ cell biology. Coupled with a highly efficient reproductive medicine scene and permissive regulations, we are well placed to address the challenges of translating this exciting research into humans.

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

×发帖声明
1、本站为技术交流论坛,发帖的内容具有互动属性。您在本站发布的内容:
①在无人回复的情况下,可以通过自助删帖功能随时删除(自助删帖功能关闭期间,可以联系管理员微信:8542508 处理。)
②在有人回复和讨论的情况下,主题帖和回复内容已构成一个不可分割的整体,您将不能直接删除该帖。
2、禁止发布任何涉政、涉黄赌毒及其他违反国家相关法律、法规、及本站版规的内容,详情请参阅《蒲公英论坛总版规》。
3、您在本站发表、转载的任何作品仅代表您个人观点,不代表本站观点。不要盗用有版权要求的作品,转贴请注明来源,否则文责自负。
4、请认真阅读上述条款,您发帖即代表接受上述条款。

QQ|手机版|蒲公英|ouryao|蒲公英 ( 京ICP备14042168号-1 )  增值电信业务经营许可证编号:京B2-20243455  互联网药品信息服务资格证书编号:(京)-非经营性-2024-0033

GMT+8, 2025-9-11 09:49

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

声明:蒲公英网站所涉及的原创文章、文字内容、视频图片及首发资料,版权归作者及蒲公英网站所有,转载要在显著位置标明来源“蒲公英”;禁止任何形式的商业用途。违反上述声明的,本站及作者将追究法律责任。
快速回复 返回顶部 返回列表