蒲公英 - 制药技术的传播者 GMP理论的实践者

搜索
查看: 4892|回复: 15
收起左侧

[质量保证QA] 如何制定原料药产品及中间体的OOT标准

[复制链接]
药徒
发表于 2017-4-1 13:34:00 | 显示全部楼层 |阅读模式

欢迎您注册蒲公英

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
企业该如何制定产品及中间体的OOT标准,根据历史数据?采用3西格玛原则?
假如我根据一年的回顾数据,求得了平均值,标准偏差,发现还是有许多的数据不再平均值加减3西格玛的范围内,但是数据统计到的最大值距离药典的规定值还是很远的,比我干燥失重最大才0.3,药典要求0.5,该如何去弄,头大,请各位专家发表看法,谢谢

找到的一篇文章:

An out-of-trend (OOT) result that does not follow the expected trend, either in comparison with previous results collected from past history. This article discusses the possible statistical approaches and implementation challenges to the identification of OOT results.

It is intended to begin a conversation toward achieving clarity about how to address the identification of out-of-trend results. It is noted that the identification of OOT results is a complicated issue and that further research and discussion is needed. This article is not a detailed proposal but is meant to begin the discussion toward achieving more clarity about how to address the identification of out-of-trend results.

Regulatory Basis

A review of recent Establishment Inspection Reports (EIRs),FDA 483s, and FDA
Warning Letters indicates the identification of OOT data is becoming a regulatory issue for marketed products. Several companies have received 483 observations requesting the development of procedures documenting how OOT results will be identified and investigated. It is important to distinguish between OOS and OOT results. FDA issued a OOS guidance in the scientific literature and discussed at many scientific conferences about OOS results.

Although the FDA guidance indicates in a footnote that much of the guidance presented for OOS can be used to examine OOT results, there is no clearly established legal or regulatory basis to require consideration of data within specification but not following expected trends.

Identification of Out-of-Trend Results

Avoiding potential issues with marketed product, as well as avoid potential regulatory issues apply of OOT control in the analysis is a best practice in the industry. In summary, the issue of OOT is an important topic both from a regulatory and business point of view. Despite this, little has been discussed in the scientific literature or in regulatory guidance on this topic. This article will introduce some approaches that might be used to identify OOT data and discuss some issues that companies will likely need to address before implementation and during use of an OOT identification procedure.

Statistical Approach Background

There is a need for efficient and practical statistical approach to identify OOT results to detect when a batch is not behaving as expected. To judge whether a particular result is OOT, one must first decide what is expected and in particular what data comparisons are appropriate.

Methodology [3 sigma approach]
  • A minimum of 25 – 30 batches data shall be compiled for fixing the Trend range.
  • Results that shall be obtained from the 25 batches tabulated, average value,
    minimum and maximum values are noted.
  • Standard deviation will be calculated for these 25 batches. Excel spread sheet
    shall be used for Standard deviation calculation.
  • Standard deviation will be multiplied by 3 to get the 3 sigma (3 )) value.
  • Maximum limit will be arrived by adding the 3 1 value to the Average value of
    25 batches.
  • Minimum limit will be arrived by subtracting the 3 1 value from the Average
    value of 25 batches. Minimum value may come in negative also at times.
  • The above maximum and minimum limits in 4.1.5 and 4.1.6 shall be taken as the
    Trend range for upper and lower limits.
  • Any value that shall be out of this range will be considered as Out of Trend
    (OOT) value or Outlier value.
  • Wherever specification has only Not more than, then only Maximum limit for
    trend can be considered. Minimum limit should be excluded.
  • Wherever specification has range then both the Maximum and Minimum limits
    for trend should be considered.
Limitations

One advantage of this approach is that as long as the assumptions are met, the rate of false positives can be set when one calculates the limits. However, a disadvantage is the products with limited data, the appropriate limits may be difficult to determine.This can lead to wrongly centered, too narrow, or too wide OOT limits.

Implementation challenges

The purpose of developing a criterion for OOT assessments is to identify the quantitative analytical results during a study that are atypical enough to warrant a
follow-up investigation. Numerous challenges exist that a company must overcome to implement an OOT procedure for commercial batches are …

  • What statistical approaches are used to determine OOT criterion? What data are used to determine OOT limits?
  • What are the minimum data requirements? What evaluation is performed if the minimum data requirement is not met?
  • What data should be used to update limits?
  • The investigation requirements (i.e., who is responsible, what is the timeline, how is it documented, who should be notified must be clearly defined.
  • Who is responsible for comparing the result with the OOT criterion?
  • How is an OOT result confirmed? What additional analytical testing or statistical analyses are appropriate?
  • What actions should be taken if an OOT result is confirmed as an unusual result?
  • How are OOT investigations incorporated into the annual product review?
Conclusion

Identifying OOT results is a growing concern for FDA and the pharmaceutical industry. Ideally, the method to determine an OOT alarm should not be too complex.


回复

使用道具 举报

药徒
发表于 2017-4-1 14:02:47 | 显示全部楼层
这篇文章的出处是哪
回复

使用道具 举报

药徒
发表于 2017-4-1 21:51:11 | 显示全部楼层
一般都这么算,如果离标准远,可适当放宽一点,否则调查要累死人,还没啥意义
回复

使用道具 举报

药徒
发表于 2017-4-1 23:02:18 | 显示全部楼层
这篇文章提的那几个问题怎么回答呢?
回复

使用道具 举报

药徒
发表于 2017-4-2 10:48:22 | 显示全部楼层
回复

使用道具 举报

药士
发表于 2017-4-2 10:52:25 | 显示全部楼层
其实企业制定内控标准时有时是不理智的,比如法定水分≤0.5%,企业搞个内控≤0.3%,结果出现多批次的0.35,0.38这样的就按不合格吗

继续说上面的法定水分≤0.5%,企业的内控可以是0.45%,比法定严格一点就行,OOT限度可以定0.40%或0.42%
回复

使用道具 举报

药徒
发表于 2017-4-2 17:43:38 | 显示全部楼层
根据风险分析,像干燥失重这样的项目可以调整为6西格玛
回复

使用道具 举报

发表于 2017-4-2 18:55:36 | 显示全部楼层
zysx01234 发表于 2017-4-2 10:52
其实企业制定内控标准时有时是不理智的,比如法定水分≤0.5%,企业搞个内控≤0.3%,结果出现多批次的0.35, ...

还需要根据工艺的稳定性和稳定性考察,确定OOT限度
回复

使用道具 举报

药士
发表于 2017-4-3 10:18:18 | 显示全部楼层
liuzheng876 发表于 2017-4-2 18:55
还需要根据工艺的稳定性和稳定性考察,确定OOT限度

企业是否需要制定oot限度?其实,我没有见过,只是在做趋势分析时,超出3倍标准差的数据才视为oot,这样才开始oot调查。

点评

有这个工具可以对生产中产生的趋势性的负面影响进行及时发现和纠正,而不会一直等到不合格  详情 回复 发表于 2018-6-14 13:39
回复

使用道具 举报

发表于 2017-4-3 14:19:27 | 显示全部楼层
zysx01234 发表于 2017-4-3 10:18
企业是否需要制定oot限度?其实,我没有见过,只是在做趋势分析时,超出3倍标准差的数据才视为oot,这样 ...

要有OOT限度的,不然你怎么判定超趋势呢,OOS都好判定,主要是超趋势不好判定

回复

使用道具 举报

药徒
发表于 2017-4-3 14:22:23 | 显示全部楼层
liuzheng876 发表于 2017-4-3 14:19
要有OOT限度的,不然你怎么判定超趋势呢,OOS都好判定,主要是超趋势不好判定

同意楼主看法
回复

使用道具 举报

药徒
发表于 2017-8-1 10:17:01 | 显示全部楼层
zysx01234 发表于 2017-4-3 10:18
企业是否需要制定oot限度?其实,我没有见过,只是在做趋势分析时,超出3倍标准差的数据才视为oot,这样 ...

过程控制,可以提前发现不良趋势

点评

其实,合规生产,真实记录很重要,否则搞些假样品,检测数据能反应个卵。 生产要加强管理,检验要及时准确出数据,QA全面监管及时准确作出分析决策,只有这样才能及时有效地解决生产实际问题。  详情 回复 发表于 2017-8-1 10:23
回复

使用道具 举报

药士
发表于 2017-8-1 10:23:43 | 显示全部楼层
入不了门者 发表于 2017-8-1 10:17
过程控制,可以提前发现不良趋势

其实,合规生产,真实记录很重要,否则搞些假样品,检测数据能反应个卵。

生产要加强管理,检验要及时准确出数据,QA全面监管及时准确作出分析决策,只有这样才能及时有效地解决生产实际问题。
回复

使用道具 举报

药徒
发表于 2017-8-1 13:38:48 | 显示全部楼层
zysx01234 发表于 2017-8-1 10:23
其实,合规生产,真实记录很重要,否则搞些假样品,检测数据能反应个卵。

生产要加强管理,检验要及时 ...

哈哈,看来仁兄受了很多罪啊
回复

使用道具 举报

发表于 2017-10-17 17:19:32 | 显示全部楼层
同楼主的问题,正准备起草相关程序
回复

使用道具 举报

药徒
发表于 2018-6-14 13:39:12 | 显示全部楼层
zysx01234 发表于 2017-4-3 10:18
企业是否需要制定oot限度?其实,我没有见过,只是在做趋势分析时,超出3倍标准差的数据才视为oot,这样 ...

有这个工具可以对生产中产生的趋势性的负面影响进行及时发现和纠正,而不会一直等到不合格
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

×发帖声明
1、本站为技术交流论坛,发帖的内容具有互动属性。您在本站发布的内容:
①在无人回复的情况下,可以通过自助删帖功能随时删除(自助删帖功能关闭期间,可以联系管理员微信:8542508 处理。)
②在有人回复和讨论的情况下,主题帖和回复内容已构成一个不可分割的整体,您将不能直接删除该帖。
2、禁止发布任何涉政、涉黄赌毒及其他违反国家相关法律、法规、及本站版规的内容,详情请参阅《蒲公英论坛总版规》。
3、您在本站发表、转载的任何作品仅代表您个人观点,不代表本站观点。不要盗用有版权要求的作品,转贴请注明来源,否则文责自负。
4、请认真阅读上述条款,您发帖即代表接受上述条款。

QQ|手机版|蒲公英|ouryao|蒲公英 ( 京ICP备14042168号-1 )  增值电信业务经营许可证编号:京B2-20243455  互联网药品信息服务资格证书编号:(京)-非经营性-2024-0033

GMT+8, 2025-10-3 22:47

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

声明:蒲公英网站所涉及的原创文章、文字内容、视频图片及首发资料,版权归作者及蒲公英网站所有,转载要在显著位置标明来源“蒲公英”;禁止任何形式的商业用途。违反上述声明的,本站及作者将追究法律责任。
快速回复 返回顶部 返回列表